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The boundary conditions at the surface of a small bubble rising in a liquid are 
examined theoretically, and it is shown by order-of-magnitude arguments, which 
are confirmed by detailed calculation in a special case, that although surface- 
tension gradients must always exist around the bubble, they are too small to 
affect the motion appreciably unless surface-active substances are present. This 
is because gradients of surface tension imply gradients of temperature in a pure 
liquid, and these turn out to be always small near the bubble if they tend to zero 
at  large distances from it. The same is true for drops of one fluid in another. 

1. Introduction 
Bubbles of gas rising in liquids are well known to behave like rigid spheres and 

obey Stokes’s law if they are sufficiently small. As the size increases, there is a 
gradual transition until ultimately the interface between gas and liquid seems to 
become free of tangential stress. If the Reynolds number is still very small at this 
stage, the velocity of rise is 14 times that predicted by Stokes’s law. The theory 
for this case is due to Hadamard and Rybczynski (independently); see Lamb 
(1932, Art. 337), or Levich (1962, §§70 and 81). 

Bond (1927) suggested that the apparent rigidity of small bubbles was caused 
by surface-active impurities, dissolved in the liquid, being swept around to the 
rear of the bubble (i.e. from top to bottom), until the surface-tension gradient 
set up by the accumulation of impurity balanced the viscous traction around the 
bubble. With enough surface-active material, the surface would be brought to 
rest relative to the bubble. We shall refer to this as the ‘surface contaminant’ 
theory. 

Afterwards, Bond & Newton (1928) put forward a ‘surface energy’ theory, 
stating that if the bubble were were small enough and the surface tension high 
enough, insufficient energy would be available to stretch or compress elements of 
interfacial area, even in a pure liquid, and the surface would have to be at 
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(relative) rest. This explanation is also offered by Lane & Green (1956). However, 
Frumkin & Levich (1947; see also Levich 1962, Q 71) believed that the ‘surface 
energy’ mechanism was theoretically impossible, but that the ‘surface con- 
taminant’ one was satisfactory. Purther consideration of the ‘surface con- 
taminant’ mechanism is given in Parley & Schecliter (1963). 

In  this paper it will be shown that the ‘surface energy’ argument is valid, and 
can indeed be reduced to the same form as that of Frumkin & Levich. The 
reason is that heat energy can be thought of as a surface-active solute in the 
liquid, whose solubility is proportional to the specific heat and whose surface 
activity is determined by the variation of surface tension with temperature. 
However, the ‘bulk solubility’ of heat in all liquids happens to be very high, and 
its surface activity relatively weak. As a result, the ‘surface energy ’ mechanism 
is quite inadequate to explain the observed immobility of the surfaces of small 
bubbles. Frumkin & Levich were thus right to reject the theory, but for uncon- 
vincing reasons. 

Similar arguments lead to the same conclusions for drops of one liquid moving 
in another or in a gas. The theory also applies to the case of a bubble held a t  rest 
by an externally imposed temperature gradient (Young, Goldstein & Block 
1959). Here, too, it produces a non-vanishing, but very small, effect. 

2. The surface energy mechanism 
Consider an approximately spherical bubble of radius a, rising steadily at 

speed U in it liquid of density p, kinematic viscosity v and surface tension y, at 
absolute temperature T. Let Ualv = R, the Reynolds number. We shall assume 
that the density pg of the gas in the bubble is very small in comparison with p. 
For the bubble to be nearly spherical, both R and variations of y must be 
sufficiently small, but we do not require that R < 1 unless the liquid is such that 
the sphericity condition implies it.? 

Suppose the bubble’s surface is free to move. Then the tangential component 
of velocity, in a frame of reference in which the centre of the bubble is at rest, is 
of order U downwards at the equator and tends to zero a t  the upper and lower 
poles. Elements of area on the upper half of the bubble will thus be growing, and 
on the lower half shrinking, at equal rates of total order of magnitude Ua. 

To see what effect this stretching and shrinking of surface elements has on the 
temperature of the interfacial layer we must apply the first law of thermo- 
dynamics. If we assume that the transfer of heat between the interfacial layer 
(which is only a few molecular diameters in thickness) and the adjacent fluid is 
reversible we find that the heat SQ which must be added to an element of surface 
when its area increases from A to A + d A  is given by 

where E is the internal energy of the interfacial layer per unit area. E is to close 
approximation a function of T alone so, on rearrangement, we have 

SQ = d(EA)-ydA,  

(E  - y )  d A  = SQ - A(dE/dT) dT. (1)  
t Moore (1965) suggests that bubbles will be very nearly spherical if R < (qp4/py3)6, 

and for many liquids the right-hand side can be O(102). 
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Now from Zemansky (1957, Art. 14.5) 

E - y = - T(dy/dT) > 0, 

(for liquids other than liquid metals) so that we can deduce from (1) that the 
change in area of surface elements has two effects. 

Because of the first term on the right in (1) heat will flow into the upper half of 
the interfacial layer and flow out of the lower half of the interfacial layer. This will 
tend to make the upper half of the interfacial layer colder than the surrounding 
fluid and the lower half warmer. 

Because of the second term on the right, and because 
dE/dT < 0, 

there will be a tendency for the element to rise in temperature while it is stretching 
and fall in temperature while it is shrinking. This would make the interfacial 
layer hottest at  the equator and coldest at the poles. 

We shall show later that the second term on the right is negligible so that the 
first effect dominates. Thus the rate 0 a t  which heat must be supplied to an 
element of area A ,  changing at a rate A,  is 

0 = -T(dy/dT) A. (2) 
Moreover, in the absence of the second effect the temperature of the interfacial 
layer is such that the surface tension will be higher towards the top of the bubble. 
Thus a tangential stress is established which opposes the motion. 

An upper bound for this stress can be found by placing an upper bound on the 
temperature differences which exist around the bubble. This can easily be done 
by ignoring heat transfer in the air and vapour inside it. I f  K denotes the thermal 
conductivity of the liquid, 6 the thermal boundary-layer thickness, and if 
temperature variations around the bubble are of order AT, then 

or 
- T(dy/dT) Uu N Ka2AT/6, 
AT N - T(dy/dT)( US/Ka). 

The tangential stress e, due to variations of surface tension is then given by 
(3) 

This is to be compared with the tangential stress ep due to viscosity, for which 

ev Pula ,  ( 5 )  

where ,u is the dynamic viscosity of the liquid. Equation (5) is obvious if R 5 1, 
and has been shown by Moore (1959) to be true also if R 9 1 and the surface is 
effectively stress-free. We assume merely that ( 5 )  remains true for intermediate 
values of R. 

The dimensionless ratio 

because the thermal boundary-layer thickness S is of order a or smaller. This 
ratio happens to be small for all liquids for which data are available (Hodgman 
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1960), its greatest value a t  20 "C being 0.074, for acetone. For water the value is 
0.011. Therefore the actual motion of the bubble should be only slightly different 
from that predicted for a bubble with uniform surface tension, and the large 
difference observed for small bubbles must be due to the effects of surface 
contaminants. This is our principal result. 

The same dimensionless ratio as in (6) is reached if one starts from Levich's 
(1962) equations (74.13) and (75.7), which give his parameter y2 in the form 

when the obvious error of sign is corrected. Here D is the diffusivity of the 
surface-active material in the liquid, I?, is its surface concentration, and ay/aco 
the rate of change of surface tension with respect to concentration (c,) of the 
material in the liquid. Putting in the values for heat, i.e. 

D = S / p c p ,  r0 = - T dyldT, dc, = pcp dT, (8) 

where cp is the specific heat of the liquid, and the second equation is derived from 
the formula for entropy per unit area, w0 transform (7) to 

(9) 

Now Levich shows (his equations (74.10) and (74.11)) that if y2 < p (which is the 
same as the condition that e, < ev in our equation (6)) the motion of the bubble 
is practically the same as if y2 = 0, in agreement with our conclusion above. 

For the case where R and pcp UaIK (the PBclet number) are very small we may 
obtain a precise result by using linearized equations. If $ is the dimensionless 
Stokes (axisymmetric) stream function given by 

where (r,  8) are dimensionless spherical polar co-ordinates based on the centre of 
the bubble and (ur, uo) the corresponding velocity components, then 

D 4 $ = 0 ,  where 

is the equation governing the fluid motion. Similarly, if T is the dimensionless 
temperature perturbation given by 

TOT = T-To, 

To being the fluid temperature far from the bubble, then, since convection is 
negligible, 

V2T = 0 

is the equation governing the fluid temperature. The relevant boundary conditions 
as r -+ co are r -+ 0, $ -+ +?sin2@, 
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corresponding to uniform temperature and uniform %ow a t  infinity. At r = 1, 
the surface of the bubble, there are three boundary conditions, on normal velocity, 
normal heat flux and tangential stress. The first is obviously 

uT = o or a$/ae = 0. 

For the second, since equation (2) gives 

A = A div" u, 

K(aT/an) = - T,(dy /dT) ,  div* u, 

where n is the unit outward normal at  the bubble and div" represents a two- 
dimensional divergence taken over the bubble surface, or in terms of @ 

Finally, the tangential stresses due to viscosity and variations in surface tension 
must balance, so that 

(dy/dT) , ,  grad" T + ps = 0. 

where grad" is taken over the surface only and psis the surface component of the 
viscous stress. Thus 

The relevant solution can be obtained directly by elementary means as 

$ = (&r2+Ar+B/r)sin28, T = Ccos(8/r2), 

where 

and 

It is worth noting that F = 1 corresponds to the case of zero boundary shear- 
stress (Hadamard's solution) while P = 0 to the case of zero boundary velocity 
(Stokes's solution). This shows that the absolute value of (To/3pK)(dy/dT): is 
a very good estimate of the proportional change in surface shear stress (and thus 
of rising velocity of the bubble) caused by surface-tension variations. 

The drag on the bubble D, is given by 

D = S ~ a U p ( 1  -+F). 

So far, we have considered only a liquid in which the temperature far from the 
bubble is uniform. If it  is not, the bubble will tend to move towards warmer fluid, 
because the surface energy will then be decreased. This was shown by Young 
et al. (1959), who considered the case of a bubble held at  rest against gravity by 
an appropriate temperature gradient. They ignored heat transfer into the surface 
layers of their bubbles, however, and their heat flux equation (8 e) should thus 
have contained an extra term corresponding to our Q. But it is readily shown that 
the error caused by neglecting it is of the same order as e,/e, above, which is 
small, and this accounts for the agreement between their theory and experiments. 
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3. Accuracy of the approximations 

second term on its right-hand side is negligible. Its ratio to the first term is 
We now return to (1) to investigate the validity of the assumption that the 

A(d2y/dT2) a2(d2y/dT2) U ATla 
Ua dypT- 

N 

AdyldT 

= O ( F % ) ,  

where (2) has been used to estimate AT. As K/(Td2yldT2) is a velocity of order 
105 cmlsec or more for most ordinary liquids, and U is of order 40 cm/sec or less 
(Haberman & Morton 1953) for bubbles in which surface tension is relevant at 
all in determining the motion, the right-hand side of (9) can be taken to be very 
small, as required. The approximation is, in effect, that the behaviour of the 
surface is so nearly isothermal that the variation of internal energy of the 
interfacial layer with temperature is negligible. 

The above estimate requires some knowledge of d2y/dT2; we used the power- 
law variation of y given by Zemansky (1957). This is only approximately true for 
real liquids, but the inaccuracy can hardly be great enough to upset the result. 

4. Conclusions 
In  a pure liquid with no dissolved surface-active substances, the variations in 

surface tension around small bubbles, while not vanishing (as Levich appears to 
claim) are too small to slow down internal circulation by the observed amounts. 
Levich’s own analysis can be used to support this result. 

The authors would like to thank Prof. P.G.Saffman for an illuminating 
discussion of the work described above. 
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